
 ■" 

AD/A-005   412 

AUTOMATIC   PROGRAM   VERIFICATION   II: 
VERIFYING   PROGRAMS   BY  ALGEBRAIC   AND 
LOGICAL   REDUCTION 

Norihlsa  Suzuki 

Stanford  University 

Prepared  for: 

Office  of  Naval   Research 
Advanced   Research  Projects   Agency 

December  1974 

DISTRIBUTED BY: 

um 
National Technical Information Service 
U. S. DEPARTMENT OF  COMMERCE 

■-—"-—--j- ■'- 





•^■1 ■""■ 
1    ■  

UNCLASSIFIED 

SECURITY  CLASSIFICATION  Of  THIS PAGEflWi^ D«(« Enfrmd) 

replacement rules, fast algorithm for simplifying formulas using proposi- 
tional truth value evaluation, and a depth first proof search process. 
The basis of deduction mechanism used in this prover is Gentzen-type 
formal system. Several sorting programs including Floyd's TREES0RT3 
and hoare's FIND are verified.  It is shown that the resulting array is 
not only well-ordered but also a permutation of the input array. 

Jik. 
UNCLASSIFIED 

SECURITY CLASSIFICATION OF THIS PAGEOWi«) Dalm Fntertd) 

-  -   --   —•■      - ■   ■■ 



■ ■»■■' ■  '"    '   '  ■ 

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY 
MEMO AIM-255 

COMPUTER SCIENCE DEPARTMENT 
REPORT STAN-CS-74-473 

DECEMBER 1974 

AUTOMATIC PROGRAM VERIFICATION II: 

VERIFYING PROGRAMS BY ALGEBRAIC AND LOGICAL REDUCTION 

by 

Norihisa Suzuki 

ABSTRACT: 
Methode for verifying progroms uritten in a higher level programming language are 
deviled and imp!em-nted. The system can verify programs uritten in a subset of 
PASCAL, which may have data structures and control structures such as WHILE, 
REPEAT. FOR, PROCEDURE. FUNCTION and COROUTINE. The process of creation of 
verification conditions is an extension of the work done by Igarashi, London and 
Luckham uhich is based on the deductive theory by Hoare. Verification conditions 
are proved using specialized simplification and proof techniques, which consist 
of an arithmetic simplifie-, equality replacement rules, fast algorithm for 
simplifying formulas using prepositional truth value evaluation, and a depth 
first proof search process. The basis of deduction mechanism used in this proven 
is Gentzen-type formal system. Several sorting programs including Floyd's 
TREES0RT3 and Hoare's FIND are verified. It is shoun that the resulting arr.iy is 
not only ue I I-ordered but also a permutation of the input array. 

This rfiearch was supported in pari by (he Advanced Research Projects Agency of the Office of the 
Secretary of Defence under contract DAHC I5-75-C0435. 

The view and conclusiors contained in this document are those of the author and should not be 
interprtttd as necessarily representing the official policies, either expressed or implied, of the 
Advanced Research Projects Agency or the US Government. 

Reproduced in the USA. Avauaole from the National Technical Information Service, Springfield 
Virginia 22/5/. 

i^ 
. 

■ ■ ■     -■---■ — 
■   - 

mmmmtmttm. •a^MOd 



■- -■■  ■  -■■■ 

r 

r 

Introductioti 

Verifying that programs work faultlessly is a necessity. We can test whether they work or not 

in several case But unless we prove the correctness of programs, it is impossible to claim that they 

endure long lasting usage. Since proving by hand is cumbersome and not always free of errors, 

mechanization of venficution is strongly desired. 

Some attempts have been made to verify programs mechanically [1].[2],[10],[11], but there arc 

several problems which must be solved in order to make automatic verification of programs 

practical 

First, we have to find a way to express assertions more easily. Most of the previous verifiers 

require assertions to be written in first order predicate sentences with a fixed number of oredefmed 

predicate symbols and function symbols. But this is in many cases inconvenient and mfeasible. For 

example, n we have to deal with the correctness of programs with complex data structures, we need 

to express properties in higher order sentences. Thus, many complex programs have not been 

verified because the assertions about programs have not been properly stated. 

Second, we have to find a better way to prove verification conditions automatically. Proving 

verification conditions using a general automatic theorem prover is in most of the cases 

unsatisfactory. If we are verifying programs in specific domains, we can use special properties of 

functions anrl predicates to construct fast special purpose provers. King[IO] and Deutscht] have 

succeeded by using a built-m simplifier for integer arithmetic, bi.l these programs still cannot cope 

with other domains 

In most ve ification systems the user must specify 10t only input and output conditions but 

also loop invariants. Although it is an undecidable problem to generate loop -nvanants. the system 

should aid the piogiamm.;r in constructing loop invariants. Also, programs with complex data 

structures and complex control structures must be verified, including parallel programs. 

In this paper we describe a fast simplification and theorem proving facility that is a new 

component of the Stanford PASCAL Verification System described by Igarashi, London and 

! 
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Luckham in [9] This system permits the prügrammei to formulate the semantics of his data 

structures, procedures, and functions in simple, natural statements. These statements are used by the 

system as implification and special theorem-proving rules during verification. So programs 

computing over any domain can be dealt with easily. 

Al an example, automatic verification of a sorting program is studied in detail. It is shown 

that not cnly is the resulting array ordered but also it is a permutation of the input array. The 

verification of Floyd's TREESORT program and Hoare's FIND program are listed, both of which 

are verified within a reasonable amount of computation time. Because these programs are complex, 

and ii?e data structures-in this case an array data structure, whose semantics has not been studied 

well-they hdve been considered as one of the big challenges for automatic verification. Thus our 

method of verification is very promising for practical use. 
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II.      Expressing Assertions by Structured Definitions. 

Here, we make a few comments about how the user of the system might construct 

documentation in a way that aids the verification of his program. The main idea is to use defined 

concepts that are close to the natural concepts employed in creating the program. 

As is disrusseo in the previou: section, it is impossible to state all properties of programs in 

first order sentences with fixed number of predefined function symbols and predicate symbols. As an 

example let us examine the process of verifying sorting programs. Suppose a program S accepts an 

array A and sorts it and output it as an array B. Then, the correctness of 5 is expressed in terms of 

properties thai elements of B are ordered in ascending(oi descending)order and B consists of all 

elements of A and of nothing else Tht first property can be stated as 

VI. (1<I<N-1:>B[I]<B[I+1]). 

But one way to describe the second property is to state that there is a one-to-one mapping from 

elements of A to elements of B. That is the sentence 

3F. (VI. (liI<NDl<F(I)<N)AVI.J.(i<UJ<N3F(I)-F(J))  AVI. (1<I<NDA(I] =B[F (I)])) 

expresses the second property. 

But previous verifications of sorting programs, either manual or automatic, have dealt with 

only the fust property. The detailed study of FIND by Ho3ie[7] briefly explains that to prove the 

correctness it is necessary to show that the second property holds, but does not formally verify it. He 

thought that the assertions were not obvious and the proof would be tedious. It is certainly 

disadvantageous to introduce second order sentences because they require complicated proof 

procedmes But since it is essential for the automatic verification to prove the second properties 

formally, we have to invent a way to verify them. 

The way to avoid using second order sentences is to extend the language by introducing; new 

symbols There is also another nice thing about introducing new symbols. To express that array B is 

a permutation of array A, we have to employ a rather complex sentence. It mipht be as difficult to 

understand what it means as to understand what the program does. Also it is very easy to introduce 
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error ■  But we can avoid complexitites by writing 

Permutat ion(B,A). 

In general there are two methods to introduce new symbols. The first method is to assume the 

new symbol as a shorthand representation of a sentence represented by already defined symbols. The 

second method is to define symbols by axioms stating the properties of these symbols. For example, 

after defining axioms of prepositional calculus consisting of symbols "D" and '->", we can introduce 

"A" symbol as a shorthand notation for -(AD-B) . But also we can introduce it by axioms, 

AABDA.   A/\BDB  and AD(BDAAB). 

Assertions describing a program can be structured top-down by Uiing new symbols. Their 

meanings are refined succesively until everything is well-defined. An analogous concept can be 

found in programming. We can enrich the language and clarify the meaning by introducing new 

symbols (operations) These new operations are defined either by macros or by procedures. Macros 

define new operations by using already defined concepts. So they do not give more computation 

power but clarify programs Whereas, procedures can define new operations recursively, so that they 

give new power. 

Following this analogy to programming, we can call the way we write predicate sentences with 

newly defined symbols a structured way of expressing --ssertions. n detailed study of how to 

introduce new symbols is in section V, and also is found in the work by von Henke and 

Luckhamf!)]. 

In the case of "Permutation(B,A)", we could define it as the shorthand representation of ^he 

previous sentpnee. But instead v^e shall define it by a set of properties (specifications) including the 

following axiom, 

VA. 1 ,J.Permutat ion (Exchange(A, I, J) ,A), 

where   Exchange (A,! .J)    is   a   function   mapping   an   array   A   into   an   array   resulting   from 

exchanging I-th element and J-th element of A. In addition, Permutation is an equivalence relation, 

so we must include axioms for symmetric, reflexive and transitive properties. 

We have replaced a second order statement by a relation which has arrays as individuals. 

Now, arrays are a second sort of individuals. 
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Thus, we need to have a special semantic definition for array assignment, since arrays as well 

as array elements occur in assertions. 

NOTATION      <A,I,E>:   An array obtained from A by plarmg E   in  the   i-th 

posi t ion. 

ARRAY ASSIGNMENT AXIOM 

P<<A.I.E>)   lAUKEI  P(A). 

MM^MaMMMB 
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III.    Documentation Statements and Their Use. 

Introduction of new symbols it essential to verification for ease of both representation and 

understanding oi assertions We allow users to introduce new symbols by documentation in the form 

of three limple kinds of statements They are used by the prover as (i)rewriting rules to expand new 

symbols, (u) reduction strategies which state that some expressions are reduced to others under 

specified conditions, and (nOgoal-subgoal strategies which state that certain well-formed formu'as are 

tn. - if certain others are true. We found that they are convenient and powerful. 

From the method of construction of verification conditions [5],[6],[7J.[9], all the venficatior, 

conditions are of the form 

AIA...AAN - CIA...ACM. 

Since this form of representation is more natural for understanding than disjunctive normal form, 

we retain this form throughout the proof. The .)roof procedure is based on Centzen's formal system. 

Thus, the validity oi each CI is proved with the assumption AIA. . .AAN. 

We first explain a special pattern matching language, in which all the documentation 

statements are written. 

1. Pattern Matching. 

A pattern is a string of symbols which match a term or a well-formed formula. Patterns consist 

of pattnn constants and pattern variables. A pattern constant is an identifier and a pattern variable 

is an identifier preceded by a symbol V, So »X stands for a pattern variable. Under the pattern 

matching mechanism, a pattern constant matches only that symbol and an unbound pattern variable 

matches any term and is bound to that term thereupon. A bound pattern variable matches only the 

corresponding term 

Higher order pattern matching is undecidable in general. So. in this algorithm a term with 

unbound pattern variables is not matched to a term with unbound pattern vanables. But still this 

restricted matching algorithm is ambiguous. For example, if a pattern aPCsX) is matched to 

6 

■ - -—"■    ■  --        ■ -     - -    ■   ■ -   ■    - -   ■--■■■■--■■-  ■■-■  -  .   . -^_. .. ..    . - ■ ■     i      I ngj^.  .,_... 



Q(F(A)), both wPmQ, 9X=F(A) and 9P»Q(F( )), «X-A are permissible bindings. This ambiguity 

is costly in computation and should be avoided if possible. Thus, in this system we employ an 

incomplete but decidable procedure. The matching is done from the outer symbols, and from left to 

right among parameters. So (?P(eX) matches toQ(F(A)) and yields eP=Q and ®X=F(A). 

The limited facility has not caused much inconvenience Since higher order sentences can be 

translated to first order sentences by introducing new symbols, all properties can be expressed in first 

order sentences. We are going to see that the pattern matching does not cause much inconvenience 

in the case of data structures either. Suppose A and B are both arrays. If we match »X [«Y) to 

AIBHn , we get i^X-A and 9Y=B[I) by our matching algorithm. But we do not want the bindings 

of i»X-A [B [ 1) and   Y=l, since A [B N) is not meaningful. 

2. Rewriting Rules. 

We can use TEMPLATE statements to introduce new symbols as shorthand representations of 

already defined expressions. 

TEMPLATE  <pattern>  « <expresbion>. 

Then, a  rewriting rule is created from this statement. The system replaces every occurrence of 

<pattein> by <expiession> according to the rule. 

If we want to introduce 

Ordered(A,!,J) 

as a shorthand representation of 

VX. (I-X'J  :> AtXJsAtX+D). 

then we can write 

TEMPLATE Ordered(«A,tl.eJ)  - VX.(I<X<J D A[X]<A[X+1]). 

3. Reductinn Strategies. 

Also, we can introduce new symbols by a set of axioms. These axioms can be stated by 

AXIOM statements and COAL statements to produce reduction strategies and goal-subgoal 

strategies respectively. 

We can specify reduction strategies to simplify terms or well-formed formulas. These strategies 

- M^^MM 
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are of two kinds, one is an unconditional reduction and the other is a conditional reduction. 

Unconditional reduction strategies can be fed into the system by statements of the form 

AXIOM  <pattern>  •*  <express ion>. 

The effect of this strategy is to reduce any expression which matches the <pattern> to <expression>. 

The <exptession> may have identifiers which appear in the pattern as pattern variables. They are 

bound to some forms by matching. For example, one can represent one of the axioms of list data 

structures, 

VK.Y.CAR(CONS(X,Y))-X, 

as a simplihcation rule, 

AXIOM CAR(CONS(e>.eY))«X. 

Then P(CAR(CONS(A.B))  is reduced to P(A) since eX is bound to A. Or,!, universally quantified 

equality or equivalence relations can be represented by this method. 

Conditional reduction strategies are specified to the system by statements of the form 

AXIOM  IF  <pattern 1>  THEN <pattern> « <expre5sion>. 

The effect is to reduce expressions which match <pattern> to expression>.  if <pattern 1> is 

provable   by   the  system.  Some  pattern   variables  of the  <pattern   1>   become  bound   when 

<pattern>   is  matched.  If the  «pattern  1> does not  include unbound  pattern  variables, the 

validity of the 5entence 

A1A...AAN -•  -rpattern  1>. 

i?. checked  by  recursively activating the prover. If the «pattern 1>  includes unbound  pattern 

variables, it is tested whether it matches the antecedent part of the verification condition or not. If it 

matches then we consider «pattern 1> to be provable and otherwise not provable. 

For example, 

VX,Y(X<YAY;XDX=Y) 

IS a valid statement  We want to incorporate this fact into the system by conditional reduction, and 

reduce Y<X to X=Y if X<Y holds. The statement we should write is 

AXIOM   IF  X<Y  THEN 9Y<®X * X-Y. 

Then if we are to reduce the statement 

A<BAB<AAP(A)DP{B), 



the pattern  m?tches to A<B to get bindings 9Y.A and aX-B. Since there is no unbound pattern 

variable, the system sets up a subgoal B<A, and tries to prove 

B<AAP(A)DB<A. 

winch is valid. So the statement is reduced to 

B»AAB::AAP(A):)P(B). 

which   will   be   proved  to be valid  by equality substitution. As the previous example  shows. 

universally quantified theorems can be represented by this statement. But also some existentially 

quantified theorems can be .epresented. 

For example 

VX(3Y.P(X,Y)3r{X)-G(X)) 

can Le represented by a statement 

AXIOM   IF P(X.tY)   THEN FCoX)  * G(X). 

4. Coal-Snbgoal Strategies. 

Reduction strategies turn out to be important components of proof. It is a frequently used 

proof step However we rely heavily on additional goal-subgoal strategies to complete many 

verification proofs Verification conditions are of th^'form 

AIA...AAN - ciA..,Acn. 

The problem is to prove each CI. If we can prove BlaCl and A1A. .. AAN-BI , we can deduce 

A1A...AAN-.CI by modus ponens. Thus, if we have an axiom BlaCI the subproblem we have to 

solve is 

AIA. . .AAN ■* BI. 

This fact is the motivation for employing goal-subgoal strategies. 

Statements to specify strategies are of the form 

GOAL   <-pattern> SUB <pattern 1> <pattern n>. 

The strategy constructed from this statement works as follows. If .:pattern> matches to the 

consequent CI . each -pattern ^ is tested successively until one of them is provable. If <pattern 

J> has unbound pattern variables . is tested to determine whether it matches one of the conjuncts 

of the antecedent. If <pattern j> has no unbound pattern variables, a new subproblem 
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A1A...AAN  •*  <patter;,   j> 

. is tested by recursively activating the prover 

For example, the transitivity of V it defined by an axiom 

VX.Y. GZ.(X<ZAZ<Y)3X<Y). 

This is represented by a goal-subgoal strategy, 
T 

GOAL i»X<eY SUB X<aZAeZ<Y. 

In order to prove a sentence 

A<BAB<CAC<D-A<D 

using this goal, first .?X<®Y is Matched to A<D to obtain «X-A and «Y-D. Then, the antecedent is 

searched whether A<(?Z matches one of the conjuncts. In this case the search is successful and yields 

(»Z=B. Thus, the remaining subgoal is 9Z<D, which is now B<0.   So the new subproblem 

A<BAB<CAC<D-.B<D 

IS set up. This can be proved by using the same goal one more time. These strategics can also 

represent universally or existentially quantified theorems. 

Everything   which  goal-subgoal  strategies can  express  can  be expressed   by  conditional 

reduction strategies, since we can express the statement 

GOAL A SUB B. 

by the statement 

AXIOn IF B THEN A«TRUE. 

However, the system uses these statements in different ways. Conditional reduction strategies are 

used to reduce expression^ in both the consequent and the antecedent of verification conditions. For 

example, suppose we have a conditional reduction strategy specified by 

IF Al   THEN A2 * C. 

then 

A1AA2 -» B 

IS reduced to 

AIAC - B. 

and 

Al   * A2 

10 
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is reduced to 

Al   - C. 

Goal-subgoal strategies are used only to make reduction in the consequent. 

The reason <vhy we have goal-subgoal strategies is that because they are more efficient than 

conditional reduction strategies Niosl of the time we are interested in proving the validity of a 

statement of the form A -» B. Thus, we are interested in how B can be proved from A. Also the 

antecedent A Is usually more complex than the consequent B because the antecedent contains all the 

information about data structures and control structures. So the goal-subgoal strategy gains efficiency 

by limiting the reduction to the consequent part. 

11 
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IV.     Implementation. 

This verification system is built upon the PASCAL venficstion conduion generator 

VCCEN[9] First, files of the user's Axioms and Coal ttatementt are input to the system, and the 

corresponding reduction rules and goal-subgoalmg strategies are constructed. This yields a special 

reduction and proof system for the data structures and functions described bv these statements. The 

system is extensible, since strategies can be added to handle larger domain of programs. Next, a file 

containing the program with assertions is processed by VCCEN to produce verification conditions. 

These are passed to the proving sys.em. The proving system is divided into several functions. They 

are (i)the arithmetic simplifier, (ii)the equality substitution algorithm, (ili)the truth value substitution 

algorithm, (iv)the unconditional simplifier, (v)the conditional simplifier, (vi)the goal-subgoaler, and 

(vii)the logic symbol elimination algorithm. 

Gentzen-type inference rule notations are used to express the effects of functions. 

NOTATION  : B 

,where C is the goal and A and B are subgoals bc.n of which 

must be proved in order to prove C. 

(i) The arithmetic simplifier transforms arithmetic expressions into standard representations, and 

simplifies them. The standard representation is a sum of products of simple factors. A simple factor 

is an arithmetic expression which is neither a sum nor a product Then each product consists of a 

coefficient(if not equal to I) followed by simple factors w.nch are ordered by system-defined 

ordenngs. And the sum consists of the ordered products followed by a constant(if not equal to 0). 

(n) The equality substitution algnriilim handles verification conditions of the form 

AA(a=(3)AB - C. 

12 

iiM^MiiMm«*Mi --■—^-- -■-^■-■- 



wmmrmm 

r 

CASE I. Suppo ;e one of a or fj is a variable.   Without loss of generality we can 

suppose a to be a variable.  If /3 is a constant, a variable, or an 

expression with a not appearing free, then all the occurrences of a in A, B 

and C ^re replaced by ß. 

CASE 2. Suppose one of a or (J is a variable.    Without loss of generality we suppose 

a to be a variable.   If ß is an expression containing a. then all the 

occurrences of (3 in A, B and C are r^plared by a. 

CASE 3. If a and 0 do not satisfy cases I or 2 then all the occurrences of a are 

replaced by ß. 

(in) The truth value subMitution algorithm evaluates logical sentences. The grand rule of the truth 

value substitution is 

Tsubst (A.a)/\aATsubst (B.a)  -. TsubsUCa) 

AACIAB -• C, 

where both A and B may be null expressions and a is not a conjunction. Tsubst(A.o) is defined by 

the following jet of functions, which give the value of A assuming a is true. 

Tsubst(A.a) = i f a   is of   the form -ß then FsubstlA.ß)   else 

if  a   is of   the  form (3A(   then 

Tsubst(Tsubst(A,0),()   else 

replace all  occurences of a   in A by "True". 

Fsubst (A,(3) = i f  ß  is of  the  form -«a  then TsubsUA.a)   else 

i f  (3   is of   the  form aac   then 

Fsubst(Tsubst(A,ot),()  else 

i f  (3   is  of   the  form av(   then 

FsubsUFsubst (A.al.c)  else 

replace all   occurences of (3  in A by  "False". 

13 
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(iv) The unconditional simplifier applies alt unconditional reduction strategies. 

The algorithm works from inside out. Thus if we want to simplify 

R(P1 PN). 

first all PI,... ,PN are simplified to Ql QN respectively. Then R(Q1 QN) is simplified. 

(v) The conditional simpiifier applies all conditional reduction strategies. The treatment is different 

according to the position of the expressjon--in the antecedent or consequent of the verification 

condition Suppose a conditional ^cu'ction strategy is given to the system by a itatement 

AXIOM  IF <pattern 1> THEN <pattern> » <expre98ion>, 

and the verification condition to be proved is 

AlA.,,AAn •* C1A. ..ACN. 

If <pattern> matches a subexpression of CI, then 

AIA. ..AAM  -•  <pattGrn 1> 

becomes the subpioblem to be solved. 

Next, suppose • pattern> matches a subexpression of the antecedent say AI. Then 

AIA. . . AAI-1AAI+1A. . .AAM I <patterr, ]> 

becomes the subpioblem to be solved. If it is valid tiien the replacement takes place as before. 

The validity is checked by recursively activating the prover. So this is a depth first search, 

and it might go into a wrong direction infinitely. So the system allows the user to specify the search 

depth  If the search reaches this limit, it is backed up until the last decision point. 

(vi) The goal-subgnaler incorporates all goal-subgoal strategies. Suppose a goal-subgoal strategy is 

given to the system by a statement 

GOAL  <pattern> SUB <pattern 1>,... ,<pattern N>1 

and the verification condition to be proved is 

Al A. . . AAN  -» C1A. .. ACH. 

If CI matches to <rottern>, then 

A1A...AAN   -•  -pattern  1>       A1A..,AAN -• <pattern N> 

are set up as a disjunction of subproblems successively, until one of them is proved to be "True". If 

14 
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the proof is successful the problem is reduced to 

A1A...AAN - C1A...AC1-1AC!+1A...ACM. 

(VII) The logic symbol elimination algcrithni works on elimination of logic symbols V and "D" 

from the antecedent of the statement. Their functions are explained by inference rules as shown 

below 

(v-eIi m inat i on) 
AAOAB -• C AA(3AB •« C 

AA(av(5>AB - C 

AA-OAB  ■• C AA^JAB ■« C 
(D-eIi m i nat i on) 

AA(a3(})AB - C 

These seven functions are applied serially. But the simplification may be applicable after 

reducticn by goal-subgoalmg So these functions are iterated several times. The user can specify the 

number of iterations. 

15 
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The overall structure of the proven is as follous. 

Proven 

Repeat 
2 or 3 
Times 

1 1 f v or 

1                    1 
I Arithmetic    j 
j Simpli f ier     1 
1             ! 

3 exists 

1 

1            1 
I Logic 
I Symbo1      i 
I  Eliminat ion  j 
j  Algorithm   ! 
1             1 

EX T 

1 

1             1 
I Equality      I 
| Substitution   j 
j Algorithm      i 
1              1 1 

i 
1             1 
I   Pnoven    | 
i            1 

1 
i 

1             1 
| Truth Value    | 
| Substitution   i 
I Algorithm 
1             1 

1 
1 
1 
t 

EXIT 
1 

1             1 
| Unconditional 
j S i up 1i f i er     | 
i             1 

1 
1 

Conditional Simplifien 
(Recursively activates the 
prover) 

Depth of recursive search 
has a fixed bound which 
can be altered before 
running the system. 

I GoaI-SubgoaI er 
I  (Recursively activates the 
|    prover) 
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PASCAL 

TYPE SARRAY-ARRAYtltLl OF INTEGER: 

PROCEDURE EXCHANGESORT(VAR A:SARRAY;L:INTEGER) i 
INITIAL A=A8; 
ENTRY 1<L; 
EXIT   I loorteclarrayof (A.A8)! 

VAR  X:REALiVAR K.I.J:INTEGER; 

BEGIN 
Ms 
INVARI ANT Permutat i on (A, A0) AÜrder&rl (A, I +1 .L) APar t i 11 oned (A, I) A (I >1) 
UHILE I>1 no 

BEGIN 
>2;X-A[l)ilMj 
INVARIANT BigcjestlA.J-l.k'lAdsKlAfKsJ-DACJ-liDACX-AtK]) 
UHILE J<I  DO 

BEGIN 
IF X>A[J]   THEN GOTO 3; 
X^A[J]; 
K-J; 

3:J-J+1 
END; 

MIO-Ams 
A[IJ»-Xj 

END: 
END;.; 

We ,IIP going to explain thr intended interpretation of symbols and the set of axioms defining 

them When we exprpss ixioms, we have to be careful not to introduce an inconsistent set. Since a 

consistent set of axioms has a mocu.!. we can avoid introducing an inconsistent set by defining an 

interpretation and justifying axioms by showing validity relative to that mterpretation. 

Inputs to this program are an array A and an integer parameter L defining the upper bound 

17 

V.       Application to Sorting Programs 

As the first example, the verification of a simple sortng program which successively finds the 

largest element among the unordered part of the array and puts it at the end of the ordered pirt Is 

considered This program is the one considered by King[10j. The program with input i.id output 

conditions and an assertions about loop invariants is shown below. This is the actual input form for 

the system. 

■   



  

of the array Since we have an array with at least one element, the input condition is 

l.L-l. 

The output condition is 

1 5jor teclcirr.-ujof (A. A01 , 

where A0 is the Initial value of A at the entrance to the procedure and I ssortedarrayof (A, A0) 

means Out A8 is sorted to become A 

1. Issortedarrayof(A,B) 

In order A to be a sorted array of B, it must be ordered in ascending order and it must consist 

of all the elements of B and nothing else. We describe the two facts by introducing additional 

predicates. The axiom is, 

Orr|erpH(A,l,L)APermutat i on (A, B)3l ssortedarrayof (A.B). 

2. Orderod(A.J.L) 

The mterpietation of Ordered (A, J, LI  is that the subarray A[J;L] is ascendingly ordered. 

Thus, 

Ordered (A, J.LI   *- VX. (J<X<L-1:>A [X] <A[X+1]). 

where *- means that the left-hand side is the shorthand notation of the right-hand side. 

Three axioms are necessary to specify the predicate. The first one specifies the boundary case 

when J is equal to L*l. Then there is no element in the subarray and an empty array is ordered. So 

OrclerecilA.'.+l.L) 

is true 

The next axiom is an induction axiom which state that if the property holds for a smaller 

subarray it holds for a larger subanay under certain conditions It is 

Or clef eel (A. J. L) /sPar t i t i oned (A. J-1) :>0rclered (A, J-l, L). 

This   axiom   enables   the   property   to   be   extended   to   the   whole   array.   The   meaning   of 

Partitioned(A,J-ll   is  that  the array  A is partitioned  between  J-l   and  J  such  that  all  the 

elements in the upper half are larger than or equal to all the elements in the lower half. 

The last axiom states that changing elements outside of the concerned subarray will not 
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change the property The operation on the array in this program is Exchange (A, I, J), which is an 

array obtained by exchanging I-th and J-th element of A, thus 

DrderecKA.J,L)A(I<J)A(K<J)APartitioned(A,J) 

DOrdered(Exchange(A,1,10 ,J.L). 

3. Partitioned(A,J) 

The meaning of this predicate has been stated before as 

PartitionecKA.J) *- VX.Y.{1<X<J<Y<L3A[X]<A[Y]). 

There are also three axioms to specify this predicate with the same nature as those of 

Ordeicd(A,J,L) 

When J is equal to L. there is no element in the upper half of the array, so the property 

holds. Thus, the boundary property is 

Parti t ionecl(A.L). 

The .ixiom about induction is 

Port i t ionecKA. JlABicjcjest (A.J.JisParti t ioned(A, J-l). 

Since Biciyest (A, J, J)  means that A[J] is the biggest element among elements of the subarray 

A[l J], there is a separation between J-l and J. 

Also if we exchange elements of the lower half of the array the property remains valid. So, 

Par t i t i oned(A.J)A{I<J)A«<J)aPart i t ioned(Exchange(A, 1,<), J). 

4   Biggest(A,l.J). 

The meaning of this predicate is that, A[J] is the biggest element among the elements of the 

subartay A[ 1 i] 

The aviom of the boundaiy case states when I is equal ro 1. Then, 'here is one elem?nt in the 

subarray which is the biggest element Thus, 

Biggest(A,l.l). 

The axioms about the induction are 

Birjgest(A.I.J)A(A[J]>A(Ul]):>Bigge9t(A.Ul.J) 

and 
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• 

Bi ggest(A,I,J)A(A(I+1J 2AIJ])aBigges t(A.I+].I+1). 

The next axiom states that if we move the biggest element by Exchange, then the place of the 

biggest element changes The objective of the program is to move the biggest element of subarray 

A[l I] to A[l] Thus, the axiom 

Biggest (A, I, JlDBiggest (Exchantje (A, J, I), I, I), 

is sufficient. 

5. Permutation(A.B) 

The meaning is that the array A is a permutation of the array B. 

If we exchange elements of an array, this is a permutation of the array. 

Thus. 

Pernutat ion (Exchange(A, 1, J) ,A) 

is an ax.om A'so Permutat ion(A.B) is an equivalence relation, so 

Permutat ionlA.A), and 

Permutat ion (A,B):>Perimjtat ion(B,A), and 

Permutat ion(A.B)APermutat ion(B,C)Permutation(A,C), 

are axioms Since any permutation can be obtained by repeated operations of Exchange, these are 

sufficient axioms to prove the prop?rty. 

6. Exchangp(A.I.J) 

The ixiom sufficient to represent that any N-place cycle is decomposable into N Exchanges is 

Y.A[J]D^"-A.I.Y>.J.X>-Exchanrje(<A,I,X>.I,J), 
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The followitig listing is the goalfile which is supplied to the system along with the program. 

This shows how simplification and goal-subgoaling rules are selected to represent axiomj. 

GOALFILE 

• 

GOAL   Issortedarrayof(«A.uB)  SUB Permutation(A,B)AÜrderedlA,1,L) t 

AXIOM OrcleredlA.L+l.LUTRUE; 
GOAL  Orilered('?A.«Pl,L)   SUB Ordered(A,Pl+l .L) APart i t ioned(A,Pl) j 
GOAL 0rdGred(Exchancje((»A,(?Pl,(»P2),9P3.L) 

SUB   (Pli^MPZsPSJAOrderedlA.Pa.LlAPartiti-jnedJA.PS); 

AXIOM Partltioned(A.L)«TRUE; 
GOAL Parti tionedleA.ePl)  SU3 Bicigest (A.Pl+l,Pl+l)APart i t ionedCA.Pl+l) • 
GOAL  Parti tioned(Exchange((?A.9pr.eP2).eP3) 

SUB   (PI<P3)A(P2<P3)APar t i t i oned(A,P3)| 

AKIOn Biggest (A.1.1)"TRUE; 
GOAL  Biggest (Exchancje(iaA.6'Pl.@P2).®P2.(?P2)   SUB Biggest (A,P2.PI) ; 
GOAL Biggest (»A, tP2, »PI J   SUB  (A[P1] >A[P21 )ABigcjest (A,P2-1,P1); 
GOAL Biggest (l?A.öP2.e'P2)   SUB  (A [P2] >A [PI] ) ABiggest (A,P2-1 .«Pl); 

AXIOH Permutation(eI)eI)~TRUE; 
AX ION Permutat ion(Exchange(ell,®12,el 3),@I1)-TRUE; 
GOAL PerniutatiQn(eA,eB)  SUB Permutat ion(A,®C) APermutat ion (o»C,B) { 

AX I OH  IF  Y=P1[P3]   THEN 
<<ePl.@P2.9Y>,eP3.eP4>«Exchange(<Pl.P2,P4>,P2.P3): 

GOAL 0 < ©P1+(*P2 SUB (0<P1)AO<P2) j 
GOAL (9P1<1»P2 3UB(P1<C»P3)A((»P3<P2)J 
AX I On •P1<«P2 " Pl+l<P2i 
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This is the output of computation which verified the program in 19 seconds. 

«i 

THERE ARE 4  VERIFICATION CONDITIONS 

K  J 
(1<L 
-♦ 

Permutat i on(A,A) & 
OrderedU.L+l.L) & 
Partitioned(A,L) & 
1<L & 

Pe^tnutation(Atfl.A,   fi 
Orclered(AA     '*1+1,L)  & 
Partitioned(A#l,I#l)   & 
ISlftl 

I ssor tedarrayof(A#l,A))) 

# 2 
(1<I   & 
Pcrmutation(A,A8)   & 
Ordered(A,I+1,L)   & 
Part i t ionecKA. I)   & 
1*1 

BirjcjestlA.2-1,1)   & 
1<1   & 
112-1   & 
2-isl & 
A[11=A[1]   & 
(-.J«3sl   S 
Biggest(A,Jrf3-1.K#3)  & 
1<<«3 & 
KAG<J</3-l  & 
J#3-1<I   & 
XäG-AIK«] 

Permutation(«A,IC#3,AtIJ>,l,X#3> A0) & 
0rclered(«A,K*3,AtIJ>.I.X#3>,I-Ul,LI  & 
Parti tioned(<<A.K#3,A[I)>.I.X«3>,I-l)  & 
lsl-1)) 

» 3 
(-AIJ1<X & 
J<I   (ü 
BiggestlA,J-l,K)  & 
ISl? & 
K<J-1  & 
J-l-I   & 
X-AtIC] 

Biqcjcst (A, J+l-1. J)   & 
1SJ  Ä 
J<J+1-1   & 
J+l-lsl & 
AUJ-AIJ]) 

22 



mm i   

ft U 
(A(J]<X & 
J<I & 
Biggest (A,J-1,KI & 
UK & 
K<J-1 & 
J-lsl Ä 
X-AtK] 

Bigcjest(A,J+l-l,K) S 
ISK « 
KSJ+I-I & 
J+l-lil & 
X-AK]) 

AFTER SOnE SIMPLIFICATION, YOU CAN GET 

U  1 
TRUE 

n 2 
TRUE 

ft  3 
TRUE 

« 4 
TRUE 

TIME: 19 CPU SECS, 21 REAL SECS 

778 STATE STACK CELLS USED 
13G TOKEN STACK CELLS USED 

958 DECISION POINTS 
19A7 FAILURES 
3 SECS GC TIME 
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Here is another sorting program which has been verified. This is Floyd's TREE SORT 

program[4] with assertiorf «nd the goalfile. This is verified with H2 seconds of computation time. 

Most of the previously defined predicates are used in the goalfile with the same set of axioms. Thus 

there is a possibility of forming a standard set of symbols and axioms. 

PASCAL 

PROCEDURE  TREES0RT3(VAR A:TREEARRAYjL:INTEGER); 
INITIAL  A=A0! 
ENTRY L>2; 
EXIT   Issort-edarrayof (A,A0); 

PROCEDURE SIFTUPCVAR HjREAL  ; I,N:INTEGER); 
INITIAL   l-I8,n-«0| 
ENTRY  Treeorclered(n.I+l,N)A(I>l)j 
EXIT    Treeorderecim, IB.N) APermutat ion(n,n8) A 

Unchanged(0,08,1,10-1)AÜnchanged(H, MB, N+l, L); 

VAR C0PY:REAL;   J:INTEGER; 

BEGIN 
COPY * miJi 

18:   J ^ 2 « I; 
IF J < N THEN 

BEGIN 
IF J < N THEN IF MU+l]   > n(J]   THEN J »■ J+l; 
IF fllJ]   > COPY THEN 

BEGIN 
run •■ nu]; 

ASSERT    Treeorclered(n.I8,N)A(C0PY<n[J DIV 2])A 
Perniutation(<n,J.C0PY>,n8)A 
Unchanged(M.ne,1.10-1)A 
Unchang»d(n,n0,N+l.L)A 
{N>J)A(J>I0)A(I0>1). 
I  «- J| 
GO TO 10 
END; 

END; 
run - COPY; 

END; 

VAR  WORK!REALj   I:INTEGER; 

BEGIN 
I-L DIV 2; 
INVARIANT TreeorcleredIA, 1+1 .L)A(I>1) APermutat ion(A. A0) 
UHILE I>2 DO 

BEGIN SIFTUP(A.I.L); UI-1 END; 
I-Lj 
INVARIANT Ürdered(A,I+l.L)APartitioned(A,I)ATreeorclered(A,2,I) 

A(I>l)APerniutation(A,A0) 
UHILE I>2 DO 

BEGIN 
SIFTUP(A.l.I)i 
UORK-AIU;   AIll^Atl];   AdKUORK; 
M-l 
END 

END;.; 
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This is Hoare's FIND program[7] and goalfile. This program is verified with 53 seconds of 

computation time. 

PASCAL 

PROCEDURE MNDIVAR A:FARRAY;F.K: INTEGER); 
INITIAL  A-A0; 

1 ENTRY  l<f&F<Ki 
EXIT  PARTmONED(A.F)APERnUTATION(A.A0); 

VAR n.K: INTEGER;VAR R:HEAL: 

BEGIN 
M-l;   N^K; 
INVARIANT  niNVARIANKA HIANINVARIANT (A.N)APERnUTATI0N(A.A9) 

A(MIF)A(F<N) 
UHILE  n  <  N DO 

BEGIN 
R-AIF];   Uri;   >Ni 
INVARIANT MINVARI ANT (A.n)/sNINVARI ANT (A,N)/vI INVARIANT (A, I,R) 

AjINVAniANT(A.J,R)APERnUTATI0N(A.A8)A(n<r/A(N>J, 
UHILE  !<J DO 

BEGIN 
INVARIANT  IINVARIANT(A.I,R)A(n<I) 
UHILE A[I]   < R DO  I-  I+lj 
INVARIANT JINVARIANT(A,J.R)A{N>J) 
UHILE R < A[J]   DO J «- J-l; 
IF  1   < J THEN 

BEGIN 
U«-AII1|   AIIJ^AIJ];   ACJI^Ui 
M+li  >J-1 
END 

END: 
IF F  <J THEN N-J ELSE  IF I«F THEN n-\  ELSE GO TO 10 
END; 

W: 
END;.; 

GOALFILE 
AX I On r'ER'lUTAT I0N(«I, •!) -TRUE; 
AK1 OH PERflUTATION (EXCHANGE («11,«I2.«I3),til) «TRUE; 
GOAL PERnUTATION(@A.@B)  SUB PERnUTATION(A,*C)APEPnUTATION(eC.B); 

AX I On  IF Y-PHP2] 
THEN «•Pl,«P2,«Y>,tP3,«P4>«Exch»ng«(<Pl,P2,P4>,P2,P3)| 

GOAL PARTITIGNtD(<?A,(?I)  SUB niNVARIANT (A, I )ANINVARIANT (A. I); 
AXIOn niNVARIANT (PA.D   * TRUE;    - 
GOAL    niNVARIANT(«A,»m 

SUB IINVARlANT(A,tI,«X)AjINVARIANT(A,«JltX)A(Ijj4l)A(Ijfl)Am»J)i 
GOAL niNVARIANT (EXCHANGE («»A.al.aJl.sn) SUB niNVARIANT(A,n)A(ljn) AlJiM) j 
AXIOn NINVARIANT(»A,K) « TRUE; 
GOAL NINVARIANT(IPA.&N) 

SUB 11NVARI ANT (A, el. «X) AJI NVARI ANT (A. aJ, eX) A (12 J+l) A (I ^N) A (NkJ): 
GOAL NINVARIANT(EXCHANGE(eA.el,eJl.aN) SUB NINVARIANT(A.N)A(1 <N)A(J<N); 

26 

J 



r^ —-——- * ■^w^^^w« 

GOAL   1 INVARIANT («-A.^I^AIejn  SUB niNVARIANT (A. I) AIJ^I ) • 

SItil!^!JÄ?IE1!cSii^i^ilMT^i,r-,lA",t-|-i,MJ*A,-C111 

r-n.        ,.SUB   IINVARJANT(A.I.R)A(I<ji/v(R>ÄUJ); 
GOAL JINVARIANT(«A,«I,«A[«J])  SUB NINVARIANTIA ItA(J<I)- 

SUB JINVARIANT(A.J.R)AnsJ)/H(RsÄtIJ)i 

AXIOM »A<96 - A+1<B: 
GOAL •Pls«P2 SUB(Plil?P3)A(9P3<P2); 
AX I On  IF P1<P2 IHEN (?P2£ePl  « P1.P2- 

Von Hcnke and Luckham h^ve verified other programs using this system. Also a detailed 

study of the verification method has been perfoimed.[5] 
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